Bioconversion of wheat stalk to hydrogen by dark fermentation: effect of different mixed microflora on hydrogen yield and cellulose solubilisation.
نویسندگان
چکیده
This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0 mL/g VS at 204 h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one.
منابع مشابه
Dark Hydrogen Fermentation From Paper Mill Effluent (PME): The influence of Substrate Concentration and Hydrolysis
Paper mill effluent (PME) was used as an organic feedstock for production of biohydrogen via dark fermentation using heat-shock pretreated anaerobic sludge under mesophilic conditions. The influence of substrate concentration (5, 10 and 15 g-COD/L) and the initial pH (5 and 7) on the efficiency of dark hydrogen fermentation from PME were investigated. The highest hydrogen yield of 55.4 mL/g-COD...
متن کاملOptimization of Microbial Hydrogen Production from Maize Stalk Using an Isolated Strain
Experimental designs were applied for optimizing media and process parameters for hydrogen production from maize stalk hydrolyzate by a newly isolated facultative strain.Plackett-Burman design was used to identify the significant components and using this method the media components - glucose, yeast extract, malt extract, peptone, and NaCl were identified as signi...
متن کاملSingle-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria
BACKGROUND Consolidated bioprocessing (CBP) of lignocellulosic biomass to hydrogen offers great potential for lower cost and higher efficiency compared to processes featuring dedicated cellulase production. Current studies on CBP-based hydrogen production mainly focus on using the thermophilic cellulolytic bacterium Clostridium thermocellum and the extremely thermophilic cellulolytic bacterium ...
متن کاملIntegrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production r...
متن کاملبررسی خصوصیات آناتومیکی برگ پرچم و محور سنبله گندم پیش تیمار شده با پراکسیدهیدروژن و ارتباط آن با عملکرد دانه گندم در شرایط دیم
This study the effect of seed preparation (priming) with different concentrations of hydrogen peroxide on the anatomy of the flag leaf and spike two wheat genotypes( Cross Sabalan ( bread wheat) and Saji(durum wheat)) and its relationship with grain yield, under dry land farming system condition, Experimental design was factorial, arranged in randomized complete block. Results showed that the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 102 4 شماره
صفحات -
تاریخ انتشار 2011